Magnetized Gas Clouds in the Galactic Center

Mike McCourt, Ryan O'Leary, Ann-Marie Madigan, & Eliot Quataert

Outline

"Gas Clouds in the Galactic Center"

Dynamics of Magnetized Clouds

* Disruption (McCourt, O'Leary, Madigan, & Quataert)
* Acceleration

Making Gas Clouds Work for Us

- * G2's twisted sister (McCourt & Madigan, in prep.)
- * Using G2 to probe the accretion flow

Dynamics of Magnetized Gas Clouds *in Dilute* Plasmas Background

"Cloud Crushing:"

$$t_{\rm crush} \sim \left(rac{
ho_{\rm cloud}}{
ho_{
m wind}}
ight)^{1/2} rac{
m \textit{R}_{\rm cloud}}{
m \textit{v}_{
m wind}}$$

aside: initial conditions matter

Magnetically-Enhanced Drag Force

Putting Gas Clouds to Work: Probing the Galactic Center Accretion Flow

	G2	G1	
a	1.0 ± 0.2	0.4 ± 0.2	
e	0.976 ± 0.007	0.86 ± 0.05	

	G2	G1	
a	1.0 ± 0.2	0.4 ± 0.2	
e	0.976 ± 0.007	0.86 ± 0.05	

	G2	G1	
a	1.0 ± 0.2	0.4 ± 0.2	
e	0.976 ± 0.007	0.86 ± 0.05	
J	0.22	0.32	

		G2	G1	
a	1.0	± 0.2	0.4	± 0.2
e	0.97	76 ± 0.007	0.8	6 ± 0.05
J	0.22		0.32	
i	62.	\pm 2.	72.	\pm 2.
Ω	8.	\pm 4.	21.	\pm 5.
ω	97.	\pm 2.	109.	\pm 8.

		G2	G1	
a	1.0	± 0.2	0.4	± 0.2
e	0.97	76 ± 0.007	0.80	6 ± 0.05
J		0.22	C).32
i	62.	\pm 2.	72.	\pm 2.
Ω	8.	\pm 4.	21.	\pm 5.
ω	97.	\pm 2.	109.	\pm 8.

"Sometimes a man wants to be stupid if it lets him do a thing his cleverness forbids."

- John Steinbeck

"Sometimes a man wants to be stupid if it lets him do a thing his cleverness forbids."

— John Steinbeck

- * Assume G1 and G2 are gas clouds,
- * Assume they follow the same trajectory
- * Assume they survive at least one pericenter passage

A (too-)Simple Model

$$\begin{split} \frac{d^2 r}{dt^2} &= -\frac{GM_{\bullet}\vec{r}}{r^3} \\ &- \frac{\rho_{\text{bg}}(\vec{r})}{M_{\text{cloud}}} \times \left(1 + \frac{2}{\beta M^2}\right) \\ &\times \ C^{-1} \cdot \text{diag}\left(R_{\text{cloud}}^2, R_{\text{cloud}} \mathcal{L}_{\text{cloud}}\right) \cdot \left(C \cdot \vec{v}_{\text{rel}}\right)^2 \end{split}$$

$$\rho_{\rm bg}(\vec{r}) = \rho_0 \left(\frac{r}{r_0}\right)^{-a}$$
$$T_{\rm bg}(\vec{r}) = \frac{GM_{\bullet}}{r}$$
$$\vec{v}_{\rm bg}(\vec{r}) = f_{\rm kep} \left(\frac{GM_{\bullet}}{r}\right)^{1/2} \frac{\vec{J} \times \vec{r}}{Jr}$$

Comparison with the Data

Future Evolution of G1 and G2

a testable prediction?

Summary

Magnetized Clouds

- * Tangled magnetic fields *internal* to the clouds can inhibit disruption by shear instabilities.
- * Magnetic fields *external* to the cloud can enhance the drag force, strongly coupling clouds to their environment.
- Depends on the internal structure of clouds; need to know how they formed to predict future evolution.

Accretion Flow

- * Given enough assumptions, G1 and G2 can be used to constrain properties of the accretion flow in the galactic center.
- * If it works, only constraint at intermediate radii.
- Find an orientation for the rotation axis consistent with EHT determinations at smaller scales.
- * Please keep following G1!